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ABSTRACT

The charged-particle radiation shielding characteristics of
magnetic fields generated by right circular solenoids are analyzed using
Stormer's theory. Allowed and forbidden regions for unbound particle

motion are obtained and shielded volumes are presented in parametric

W

form. The results are applicable over a wide range of particle energies
t

and solenoid parameters through the Stormer transformation.
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af Width of differential current element
E Particle energy
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I Current

Jj Current density per unit length

L Length of solenoid

M Magnetic moment of the solenoid

n Summation index

P Magnitude of particle momentum

Q See Equation 1
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(r, 8,4) Spherical polar coordinates
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v = IV
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INTRODUCTION

Magnetic shielding of spacecraft against charged?particle
radiation has been considered by several authors {see References 1
through 10 and the Bibliography“). The advantages of active shielding
over passive shielding have been discussed by these investigators. The
principal advantages are radiation shielding system weight reduction and
prevention of the generation of secondary radiation by high energy particles.
Weight savings compared to passive shielding systems are possible when
superconducting magnets are used to generate the very high magnetic
fields required. Although the magnets are not presently available, rapid
advances in superconducting magnet technology indicate that it will soon
be possible to produce the necessary high fields with very modest power
consumption. The second advantage is possible when an unconfined
magnetic field diverts the primary particle away from the space vehicle
instead of allowing it to enter material where it may generate a large
shower of secondary particles which may cause more radiation damage

than would the primary particle if no shielding at all were used.

The shielding characteristics of the dipole and current loop
magnetic fields have been analyzed in sufficient detail in References 2
through 10 and 12 through 14. Tooper8 presented the vector potential of
a finite cylindrical solenoid and one example of the allowed and forbidden
regions for this type field. It was felt that the shielding characteristics
of the finite right circular solenoid are of sufficient importance to justify
further analysis. This paper extends the analysis of the shielding geometry
and shielding effectiveness for the cylindrical solenoid for a range of
solenoid parameters and particle energies. The analysis and calculated
results should be useful to those concerned with the design of magnetic

shielding systems for spacecraft.
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STORMER'S THEOREM

Stormerl?2

obtained a first integral to the equations of motion for
a charged particle in an axisymmetric magnetic field. Discussions of this

integral are found in many places, e.g., O'Rear!4. This integral is known

as Stormer's theorem and may be written in the form (Urbanl 5, Stern”’)
Vv, 2 q AQ
Q=cosw=-—9‘= .Y + (1)
v r sin © P

where (r, 0, ¢) are the spherical coordinates; y is the impact parameter or
the perpendicular distance from the axis of the field source to the trajectory
which the particle would follow if the field were not present; q is the charge
of the particle (coulombs); w is the angle between -(fb\ and the velocity vector,
Vo is the ¢ component of velocity, p and v are the magnitudes of particle

momentum and velocity and Ay, is the magnitude of the vector potential,
A=Ay . (2)

Figure 1 shows the coordinates used in describing the particle motion.

Since Q given in Equation 1 is the cosine of an angle, |Q| can
only take on values less than or equal to unity for real particle motion.
As p, 6, y and p are allowed to vary over all reasonable values, Q takes
on values such that |Q} > 1. Regions of phase space where |[Q]| > 1 are

forbidden to unbound particles.



Figure 1. Reference Coordinate System
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VECTOR POTENTIAL

The vector potential of the finite solenoid may be found by
considering the solenoid to be composed of a large number of thin circular
strips of width df, each carrying a current dI. The vector potential of
one of these strips at r = r', 8 = Y is given in terms of the associated

Legendre polynomials by (Smythelg)

kodl Q& sin y /1! - 1 1
dA¢ == nz:l a(nt1) —r-) Pj (cos y) P, (cos 6) (3a)
if r < r', or by
p.odI 'co
dAg = :—(1::% ) PI‘1 (cos §) P (cos ©) (3b)

if r > r'. pg is the permeability of free space and the geometry is

depicted in Figure 2.

The vector potential of the solenoid is obtained by summing the

contribution of the infinitesimal loops or

Ay = S dAg . (4)
From Figure 2 it is evident that

S and df = -——51‘— ) (5)

sin® Y

The infinitesimal current dI is equal to jd? where j is the current density
per unit length along the solenoid which is assumed to be constant. Now
the integration may be performed over the angle ¢. The vector potential

for the region r < R is given by

roJR i Cin(B)

n
I
A =2 L S (]) Pateos ©



L/2

L/2

Figure 2. Cylindrical Solenoid




’ where

-8
Cin(8) = | (sin 4171 Pl (cos yyay (7)
B

and for the region r> R/sin 3, it is

_ Kol R m Conl(B) R 1
A¢ T2 1 n{n+l) ( Pn (cos 8) (8)
where
" P B (cos ) 4y
. cos
C =S =
on(B) P (9)
B
and
B =tan™! -2%

In the intermediate region where R < r < R/sin 8, the vector potential is

given by
BojR & Prll(cos 6) r\*
475~ L {[Cin(B) - Cinfa)] (£)
nt1
+ Conla) () } (10)
‘where

. -1(R)
= sin -
r

Equation 10 may be used also in the regions r <R and r > R/sin 8 if « is

redefined in these intervals tobe o = = if r < R, or a= B if r > R/sin B.
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Since the current distributions considered are symmetric with respect to
the xy plane, the coefficients of the Pé (cos 6) terms for n even must be

ZEero.

Expressions for C;, and C,, were derived out ton = 11 and are
given in Appendix A. The infinite series were terminated after the
Pj) (cos 6) term in all the calculations. The result of the termination of
the series is similar to that found by giving the current sheet a finite

thickness instead of zero thickness, Tooper8

finds a singular point in the
vector potential at the edge of solenoid using the thin sheet assumption for
the current distribution. The singularity does not appear in this approxi-

mation to the vector potential.
The magnetic moment of the solenoid is given by

M=nR%5L . (11)




ALLOWED AND FORBIDDEN REGIONS OF
UNTRAPPED PARTICLE MOTION

The insertion of Equations 10 and 11 into Equation 1 yields

Stormer's theorem for a solenoid,

1
2y queM I P, (cos 6)
Q= r sin 8 tSioR1 Z nint+1) [CIH(B)
l-lll.la.\a.. n L

- Cinla)] (%)n + Copla) (%)n“} : a2

Equation 12 may be made dimensionless by defining the Stormer unit of

length

2 _ qP‘OM
and the dimensionless quantities,
A= R/Cq, p=71/Cst, y=v/Cgt and n= L/2Cg . (14)

Figure 3 shows Cgt versus poM for selected particle energies. Sub-
stituting Equations 13 and 14 into Equation 12 yields the dimensionless

Stormer theorem for a solenoid,

2y 1 2 le1 (cos 0)
= —Lp st nz_,l EeSTa {[Cin(B)
o n X ntl
- Cin(@] (&) # Conte) (2) } (15)

Tooper8 has given Q for a cylindrical solenoid in terms of the
complete and incomplete elliptic integrals. Stormer's theory for dipole
fields, multipole fields and ring current fields has been discussed
extensively in the literature (see, for example, References 4-6, 9,
12-18). Egquation 15 permits the determination of allowed and forbidden

regions of unbound charged particle motion.
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For given particle energy and solenoid parameters, the shapes of
the allowed and forbidden regions are strongly dependent on the impact
parameter ; Figures 4, 5 and 6 illustrate the variation of the allowed
and forbidden regions in ''Stormer space' with increasing -\7 The forbidden
regions are shaded and the allowed regions are unshaded in these figures.
In Figure 4 there is a forbidden region at the solenoid where Q > 1 which
is surrounded by an allowed region with -1 < Q < 1. These will be
referred to as the inner forbidden and allowed regions, respectively.
Surrounding these regions is an outer forbidden region where Q < -1 and
finally there is an outer allowed region near 6 = w/2 where -1 < Q< 0. In
Figure 5 it is found that the inner allowed and the outer allowed regions
just come together at a pass point for a certain value of ; The ; value
for this condition is called the critical impact parameter, ;c' It is seen
in Figure 6 that further increase of the impact parameter opens the pass
connecting the inner allowed and outer allowed regions and particles may
enter the inner allowed region from infinity. The Q surface for ; = -\-(c
provides the information needed to study the shielding properties of the
field. The forbidden region for which Q¢ >1 which surrounds the equatorial
part of the solenoid shell is the completely shielded region for particles of
a specific energy. Surrounding this region is the inner allowed region
where -1 < Q <1. This region is allowed for some particle directions
and forbidden to other directions and is, therefore, the partially shielded
region. The outer forbidden region (Q < -1) and the outer allowed region

(-1 < Q < 0) are both completely unshielded for particles from infinity.

It has been found (Urban15' 18 Prescott!3, Prescott, et al. 17)
that the existence of a pass point in the projection of the Q surface on the
(p, 6) plane at ; = ;c coincides with the existence of a saddle point in the
Q surface. It is also to be noted that for this type field the saddle point
of interest occurs at the Q = -1 contour of the Q(.\-(-c) surface. These two
conditions facilitate the location of the pass points and the determination

of the critical impact parameter for which the pass point just closes.
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The necessary and sufficient conditions which must be satisfied
for a function F(p, 8) at a given point in order that the point be a saddle

point in the function are

aF =0, 1 =0 (16)
(pcy C) p (Pcr ec)
and
*F\ (1 9°F
(=) (— = >0 . (17)
[ d 89) [ 2) 2 06 ]
P P -J ec) ap P (pC’ ec)
When Equations 16 are applied to Equation 15
20 2y - [Cin(B) - Ciple)] pa-!
3 c - — .C + )\—1- Prll(cos 9){ 2 o Cn
P p.- sin 6 N =1 n+l X
Con A\PtH! 2 Pp(cos a) n [ sina ntl ( \' =0
T n pCn+2 * n(n+l) cos a “Pc A sina
(18)
and
s L T {[c (8) - Gipla)] (p—‘:)n
p 00 pcz sin? 0 P e n(n+1) in in N

+ Con(a)( )Irl-l}(shl1 9) [n cos @ Prl1 (cos 8)

-(n+l)P._, (cos 8)] =0 . (19)

The c subscripts indicate saddle point values.

Recalling the fact that only odd n coefficients are nonzero, one
finds that every term on the right-hand side of Equation 19 contains a
cos O factor. The right side of Equation 19 is, therefore, zero throughout

the 6 = w/2 plane. In order to determine Pe> Y must be eliminated between

15




Equation 18 and Equation 15 with Q = -1. This process yields
(for 6. = w/2)

1 oo PI(O) C
0=1+ 5 L e L) (52) 1Cnt8) - Canfe] - n (2 ) ole)
1
2 P,(cosa) pe sin a n+l Av
¥ cos a [-( A ) ¥ (p sin ar) :]} ) (20)

Equation 20 may be solved by iteration for a self-consistent value of Per
Finally, the p. and 8. values obtained may be used in Equation 15 for
Q = -1 to compute the impact parameter ?C which just closes the pass

point to particles from infinity. Y. is given by

- pC pC T Pi’ll(o) pc >
Ye =" %2 " Zanm ngl ot l) {[Cin(B) - Ciple)] (T)

+ Con(a)( )n+l . (21)

A series of Stormer plots are given for a range of solenoid
parameters in Figures 7 through 15. The range of parameters considered
covers the useful range for shielding purposes. The solenoid radius is
0. 048 Stormer units in Figures 7 and 8. For this radius, the Stérmer
plots are almost exactly like those for a dipole field. There is a slight
distortion of the inner forbidden region for a long solenoid in Figure 8.
The dipole analysis is completely adequate for A << 1. Figure 3 may be
used to convert the scales of these plots to lengths in meters for given

particle energy and coil magnetic moment.

Figures 9, 10, and 11 are for coils with \ = 0. 086 and with n/\
values of 0.25, 1.0 and 2. 0, respectively. The differences between these
plots and those for the dipole occur in the vicinity of the origin. The

boundaries of the inner forbidden and inner allowed regions recede from

16
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the origin toward the coil. The distortions of the inner forbidden and inner
allowed regions increase as the length of the solenoid increases. An
increase in X\ corresponds to either an increase in particle kinetic energy
or a decrease in magnetic moment of the coil and it is observed that the
shielded region shrinks toward the inside of the coil with increasing
particle energy. The region inside of the coil becomes exposed to radi-
ation at lower particle energy than does the region immediately outside

the coil.

Figures 12 and 13 show the allowed and forbidden regions for
X = 0.169 and for dimensionless lengths of 0.25 and 1. 0, respectively.
A further withdrawal of the shielded region from the center of the coil is
observed and there is shrinkage and flattening of the shielded region toward
the surface of the coil especially for the longer coils. It is also to be noted
that the edges of the longer coils extend into the outer allowed regions. The
effect of further increase of coil dimensionless radius, \ to 0.427 is shown
in Figures 14 and 15. The completely shielded region still exists for the
short coil (n/\ = 0.25) but the completely shielded region has disappeared
for n/Xx = 1. The shielded region has decreased in cross-sectional area by
an order of magnitude between Figures 12 and 14. These two figures may
be considered as representing the same coil for two kinetic energies
differing by a factor of ten. For a longer coil (n/\ = 1), Figure 14 shows

that the partially shielded or inner allowed region is very distorted.

Figures 5 and 7 through 15 give the general shape of the shielded
regions for solenoids of various lengths and radii in Stéormer units. For
space vehicle shielding the shape and location of the shielded region are of

great importance,

26




SHIELDING EFFECTIVENESS

The shielding effectiveness at any point in the magnetic field can
be calculated for an isotropic flux of particles at large distances from the
solenoid. The effectiveness of the magnetic shielding at point T for

particles of energy E may be defined as

3(r, E)

E(T,E)= 1 - —=
o(r,, E)

where 'I*(-;, E) is the flux of particles with energy E at the point r and
—
®(r_, E) is the flux of particles of this energy at infinity which is assumed

to be isotropic and uniform spacewise.

The particle population is described in six-dimensional phase space
defined by the position vector T and the velocity vector x—; by a distribution
function f(;., \—;). Liouville's theorem states that the distribution function
f(;, \_;) is constant along a particle trajectory in the six-dimensional space
(SwannZI). Swann has shown that a restricted form of Liouville's
theoreml!3, 14,17, 22 may be used in cosmic ray problems which require

the distribution to be constant along a particle trajectory in real space.

—
The flux of particles with energy E at r is related to the distribution

function by

3(x,E) = S vi(r,v) d©
Q

where Q is the solid angle containing all directions from which particles
-

may arrive at the point r from infinity. It is assumed that v, p, and E

are constant along a trajectory. Using the result of Liouville's theorem

that

VT, V) = V(T V)

27



the following equation i~ obtained for the particle flux at infinity

®(r,, E) =§ vi{r,v) dQ
Qe

-
The ratio of particle flux at r to the flux at infinity which is assumed to be

isotropic is (Prescottl3’ 17)

\S‘dﬂ S‘sinwdw dé

$(r,E) _ 0 N

2(r, E) 4
{ a0
2

Fermi14 has shown that the flux is uniform over the Stormer cone which

-
gives the allowed directions of arrival at r. Therefore,

R w2 (T)
2E) =E-T'T- sin w dw
- 47
] , E
(rm ) wi(r)

2 1@ - Q)]

The Stdrmer cone with half angle cos™ ! Q is completely closed at Q = +1 and

completely opened at Q = -1 thus,

2B D oirq, 2 +1;
®(ry,, E)

1 .
E(I-QC) if-1<Q=1landp <p_;

1if Q. < -lorif-1<Q<Oandp > p_;

where Q. = Q(;C) .

Using this analysis, the shielding effectivness for a given particle

energy at any point in the magnetic field of the solenoid can be predicted.
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A plot of contours of constant shielding effectivness is given in
Figure 16. The calculations were made for protons of kinetic energy
5 BeV and coil parameters p M = 10* Wb-m, R=2 m, L=1m but the results
have more general application through the Stormer transformation, It is
typical that the shielding effectiveness drops off very rapidly when going
from the totally shielded region to the unshielded region and the shielding
effectiveness of more than half the partially shielded region is less than
20 percent. Compared to the totally shielded region there is, however, a

substantial pact of the partially shielded region which offers good shielding.

Totally shielded and partially shielded volumes were numerically
integrated for the three length-to-radius ratios considered for a range of
coil radii in Stormer units. The results are given in Figure 17 where the
totally shielded and partially shielded volumes in units of (Cst)3 are shown
as a function of the coil radius, \, in units of Cgt. Figure 3 may be used
to obtain a conversion factor to get the volumes in cubic meters. It is
seen from Figure 17 that the shielded volumes for the three coils con-

13 as A=~ 0. Itis also to be

verge to the shielded volume for a dipole
noted that the smaller the length of the coil, the greater the totally
shielded volumes (if radius and magnetic moment are the same). The

totally shielded volume disappears earlier for larger n/\ as \ increases.

The exact manner in which the partially shielded volumes approach
zero with increasing A was not determined, but it was observed that the
shielding effectiveness in the partially shielded region drops rapidly with

increasing \ after the disappearance of the totally shielded region.

29
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CONCLUSIONS

The right circular solenoid is an interesting system for generating
magnetic fields to shield spacecraft. The analysis has revealed significant
departures from the shielding characteristics of the magnetic dipole for coil
radii greater than about 0. 15 Cg¢ and lengths greater than about 0.3 Cg;y.
The shielded volume afforded by a coil of given radius and magnetic
moment is maximized by making the coil as short as possible. A short

coil may not, however, provide the largest useable shielded volume.

The major portions of the shielded volumes are located outside of
the coil instead of inside. The implication is that the coil radius should be

considerably less than the spacecraft radius in order to utilize the shielded

volume.

Concentric solenoid configurations are of greater interest than a
single solenoid since a combination of two solenoids can provide a field-
free region for personnel and equipment between the two solenoids. The
extension of the analysis of this report to a concentric pair of solenoids
is rather simple, and the Stormer theorem for such a field configuration

can be expressed in the form

® Prll(cos 0)

Q= psme Z N i M ngl n(n+l) {[Cin(Bj)

el (£ + ey (1)}

where m; =1 and m; = EI\;II% if the Stormer unit of length is defined in terms
of M; and the subscripts j = 1 and 2 refer to the inner and outer solenoids.
From the experience gained from the study of the combination field of the
dipole and ring current?3, it is anticipated that for a range of particle

energies two saddle points may be found in the Q surface with one falling

33




between the two solenoids and the other outside the outer solenoid. How-
ever, for appropriate magnetic moments and up to a certain particle energy
there should be totally shielded and partially shielded volumes between the
two solenoids.

An analysis of the concentric solenoid configuration should

be of considerable interest as the design of magnetic shields progresses.
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APPENDIX A

COEFFICIENTS FOR EXPANSION
OF THE VECTOR POTENTIAL

CENTRAL FIELD

.
~

i2{B) = 2 cos B

Cis(B) = =3 cos B sin‘B

Cis(B) = -‘-11- [35 cos? B - 120 cos "B + 150 cos®

- 80 cos®*B + 15 cos 8]

Ci7(B) = ;1;- [-35 cos B+ 350 cos®B - 1281 cos®B
+ 2324 cos "B - 2261 cos? B + 1134 cos ! B

- 231 cos® ]

Cis(B) = é [315 cos B - 5040 cos® B + 29484 cos® B
- 89280 cos’ B + 158490 cos’ B - 172080 cos'! g

+ 112860 cos?® B - 41184 cos¥ B + 6435 cos?? 3]

CinlB) = T%E [-693 cos B+ 16170 cos® B - 136521 cos® B
+ 605880 cos’ 3 - 1632730 cos”? B + 2855292 cos!! 3
- 3326730 cos B + 2572856 cos'® g
- 1271985 cos "B + 364650 cos?? B

- 46189 cos?! B]

Cin(B) = 0 n = 2,4,6,8,10, etc.
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REMOTE FIELD

Co1(B) = 2 cot B

Cos(B) = fcos B ?035 - 7 cot
sin” f3

6 cos BB . 27cosﬁ+ 99 cot 3
sin® g sin® B 4

Cos(B) =

8cos B 66 cos B + 143 cos B 715 cot 3
sin? sin® B sin3 8 8

Co7(B) =

10 cos B 130 cos B + 975 cos B _ 5525 cos 8
sin? sin7 3 2 sin%p 8 sin3 B

Co9(B) =

+ 20995 cos 8
64 sin B

12 cos B 225 cos + 1275 cos B 24225 cos B
sinll g8 sin? sin’ 3 8 sin® B

Conr(B) =

N 101745 cos B 156009 cos
32 sin® g 128 sin B

Con(B) =0 n= 2, 4, 6, 8, 10, etc.
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APPENDIX B

COMPUTER PROGRAM

PRINCIPAL FORTRAN VARIABLES

Variable Description

AL L - length of solenoid (m)

AR R - radius of solenoid (m)

BETA 8 - tan™? ‘ZL—R

cQ Value of Q for which allowed cone is completely closed
(Q = +1)

CST Cst - Stormer unit of length (m)

DMM oM - magnetic moment of solenoid (Wb-m)

DT A6 - increment of 0 (deg)

ENK Kinetic energy (eV)

ENR Rest energy (eV)

GA ; (see Equation B-8)

PL Plll(cos 0) ~ Legendre polynomial

Q See Equation B-9

QA Q= +1

RA p at Q = %1 (boundary of a forbidden region)

RHO p

RT p. - see Equation B-7

T 6 - initial angle (deg)

TN B¢ - final angle (deg)
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Variable Description

VP Partially shielded volume (Cg®)
VT Totally shielded volume (Cg°)
XL N

PROGRAM DESCRIPTION

A computer program was written in FORTRAN to study the
shielding characteristics of magnetic fields generated by right circular
solenoids. The quantities Ex, ERr, poM, R, CQ, 6;, A6, Oy, and L are

input and the following quantities are computed:

1
o (c poM)? |
= B-
St = 2 WNm (E %+ 2 By ER)*?° (B-1)
where
c - speed of light (m/sec) .
R
N = = (B-2)
Cst
= tan-! 2R -
B = tan 1 (B-3)
a = w/2 if r <R
= Bifr > R/sin
= sin"! (R/r)if R< r < R/sin B (B-4)
n=L/2 Cg (B-5)
p = r/cst (B'6)
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11 ol +1
1 P,(0) Pc\" AV
osre ik 3 T Lo (5 ot - it - 2(2)" Cont

2 Py (cos a) A n P Sin a ntl
cos a pc sina N

gh B-6, Equation B-7

=

Using the quantities computed in Eguaticns B-1 thro
is solved by iteration for p and the value of p which satisfies Equation B-7

is denoted by p.. Using this value the following expression is evaluated.

11 1 :
' - Pe Pc Pn(0) Pcd
VT 7 T L ey { (G - Cyntel (5
n+l
+ Con(ar) } . (B-8)
Using the quantity -\7c’
2;(; 11 P1 (cos 9) C.
" psin®@ x T n(ntl) {[ in (B)
n N ntl
- Cin(@)] () + Conta) (2) } : (B-9)
Q is evaluated for values of 6 and incremented values of p. Values of Q
are examined to determine the flux.
2(.E) - oifq, 2 +1;

2(r,, E)

A

%(I-Qc)if-1<Q landp < p.;

1if Q. < -lorif-1<Q<0andp>p. ;i (B-10)
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where Q. = Q(;C). Values of p are interpolated for at Q = 1. The
quantities in Equation B-9 and B-10 are computed over the specified
range of 6. The values of 6 and p are used to calculate the volume of the

partially and totally shielded regions.

The program is written in seven parts; a main program and six

subroutines. Their purpose is described below.

Main Program

The main program accepts input, evaluates Equations B-1 through
B-6 and controls the iteration processes. It also computes the partially

and totally shielded volumes and all data is output by the main program.
Subroutines

Subroutine COMC computes Cj,, and C,, for a specified angle.
Subroutine LPOL computes the associated Legendre polynomials
Pi(cos 0) through Ph(cos 0). Subroutine FPH evaluates the right-hand
side of Equation B-7. Subroutine GAM evaluates Equation B-8. Sub-
routine QUE evaluates Equation B-9 and computes the radial and angular

components of magnetic induction. Function FX evaluates Equation B-10.

InEut

The following quantities are necessary input to the program.

Card

Variable Description Format Column
ENK Ey - kinetic energy (eV) El5.4 1-15
ENR ER - rest energy (eV) El5.4 16-30
DMM oM - magnetic moment of the El5.4 31-45

solenoid (Wb-m)
AR R - radius of the solenoid (m) F5.2 46-50
cQ Q value for closure of the allowed F5.2 51-55

cone (CQ = 1 in all runs in this

study)
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Card

Variable Format Column

T 8; - initial angle (deg) F5.2 56-50

DT A9 - increment for 6 (deg) F5.2 61-65

TN 0s - final value for 6 (deg) F5.2 66-70

AL L. - iengtih of solenoid {m) ¥5.2 71-75
Output

The following quantities are output with each run.

LAMBDA A

BETA B (deg)

DMM poM (Wb-m)

AL L (m)

ROOT Pe

PHI Equation 7 evaluated at p c
GAMMA Ye

ENK Ex (eV)

ENR ER (eV)

CST Cst (m)

THETA 6 (deg)

AR R (m)

RHO P

Q Results of Equation 9
BR, BZ

Components of magnetic induction in cylindrical

coordinates (Wb/m?)
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FLUX

Ql

R1

PARTIAL VOLUME

TOTAL VOLUME

Solution of Equation 10
+1
Interpolated value of p at Q = 1

Volume of rotation of the partially shielded
region in units of Cg¢’

Volume of rotation of the totally shielded region
in units of Cgt’
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98
99
100
101

102

103

104

200

COMPUTER PROGRAM LISTING

MAIN PROGRAM

DIMENSION THK(60)+THD(60) sRPA{60) +RPB(60) sRTA(60)sRTB(60)
DIMENSION RHO(200) +QXX(200) oFLUX(200)+sQYY(200)sRYY(200) sRWW(200)

DIMENSION PL(11)»PA(11)9PO(11)+COX(2006)9CIX(200+6)sTCI(6)0TCOIE!

DIMENSION BZ(200)sBRR(200)sCOB(6)+CIB(6)

COMMON TCIleTCOPLoPAIPCsCOXsCINsCORLCIRWXL o XNIBEsSBCBeSAICALCLN

COMMON FoGoHIBKsGAIRTeTOsSTICToBRWBT
P23414159265
CL=2,997925€+08
PO(1)=1,

PO(2)=m=145

PO(3)=15./8¢
PO(4)==35,/16,
PO(8)=315,/128,
PO(6)==6934 /2564

DO 98 1I=1,200

PHI =0,

QYY (! )=0,

RT=0
READ(5+101)ENKoENRsDMM AR sCQs ToDT s TNsAL
FORMAT(3E154407F542)

IF (DT=401) 9994999,102
BE=ATAN(AR#2,/AL)
BETA=BE/e 0174533

CALL COMCI(BE)

DO 103 I=l,46
COB({1)=TCO(1!])
CIB({I)=TCI(])

IX=0

DO 104 1=1460

RPA(1)=0,

RPB(1)=0,

RTA(1)=0.

RTB(1)=0.

CST=e5#SQRT(CL*DMM/P) / (ENKH#ENK+2¢ #ENK#ENR) #%#¢25

SB=SIN(BE)

CB=COS(BE)

XLsAR/CST
BRKEDMM/ (2 #PRALHAR#%2)
XN=AL/(2%#CST)

CLN=1e/ (XL%XN)
VFaX{+¢05

CALL FPH(VF)

FFafF

VL=XL+3,
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CALL FPH(VL)
FLaF
201 VM= 8% (VF+VL)
202 CALL FPH{VM)
FM=F
203 IA=]
8=l
1C=]
IF (FF) 20442144205
204 lA==}
205 IF (FM) 206492159207
206 IBz=]
207 IF (FL) 20842164209
208 IC=w=)
209 IF (ABS{IA+IB+IC) «GTe 2) GO TO 500
IF ((VL=VF)=ae005) 21292124210
210 IF (1A oNEe IB) GO TC 211
VFayM
FFeFM
GO T0 201
211 vi=vVM
FLaFM
GO TO 201
212 VZayYF=({VM=VF)*FF/(FM=FF ) +FF*%FM/ (FM=FF)
1#({VL=VM) /(FL=FM) = (VM=VF )/ (FM=FF))
213 RT=v2
CALL FPHI(VZ)
PHIaF
CALL GAM(VZ)
GA=G
GO TO 500
214 VZaVyF
GO TO 213
215 v2=yM
GO Y0 213
216 vi=vL
GO TO 213
500 WRITE(64501)
501 FORMAT{1H1s7Xs6HLAMBDA 312X o4HBETA 313X 93 HDMM 14X 42MHAL 912X 34HROOT s
113Xs3HPHI 911X sSHGAMMA)
WRITE(69502)XLsBETAIDMMeALIRTIPHI»GA
502 FORMATI(7E1665)
IF (RT) 60159955601
601 RHO(1)=,05
RWW({1l)=408/XL
RN=1.5
R1=,05
NaIFIX((RN=405)/405)
DO 605 J=2sN
RHO(J)=RHO(J=1)+R]
IF (XL=RHO(J)) 60246054605

46




602 IF (XL/SB=RHO(J)) 605¢605+603
603 U=RHO(J) /XL
VaX({ /RHO( J)
ALP=ASIN(V}
CALL COMC(ALP)
DO 604 K=146
CoOX{JsK)=TCO(K)
604 CIX(JoK)=TCI(K)
CONTINUE
605 RWW(J)=RHO(J) /XL

z2n
6§08 SR=0

607 SQ=2
608 TO=T%,0174533
STsSIN(TO)
609 DO 617 Is1N
R=RHO(I)
610 CALL QUE(Rs!)
Q=K
FLUX(I)=FX{QsRTeR)
AxXx(1)=Q
BRR(])=BR*ST+BT#CT
BZ(1)=BR*CT=RBT#ST
was=Q
J=0
611 IF (CQ=-ABS(WQ)) 61246159613
612 JaJel
613 JUsJ+2
GO TO (6155614+61496169615+616)9J
614 WQ=SQ
GO T0O 611
615 QA=(SQ+Q)/ABS({SQ+Q)
RA=SR+{QA=SQ )% (R=SR)/(Q=SQ)
QYY(1)=QA
RYY(!)=RA
616 SQ=q
617 SR=R
IXunlXx+l
J=1X
THD(J)aT
THK(J)=TO
DO 809 122,200
IF (RHO(I)=RT) 79847984810
798 IF (1 «GTe 2) GO TO 800
IF (FLUX(1)) 800,799,800
799 RPA(J)=,0001
RTA(J)=,0001
800 IF (ABS(FLUX(I)=FLUX(I=~1))=e999) 80248024801
801 A=RHO(I=1)
B=RMO(1])
C=QXX(1=1)
D=QxXx(1)

47



FSN=(B=A)/(D=C)
RPTeA+(=14=C)%*FSN
RYTzA+(1e=C) %FSN
IF (RPA(J)) 1801,1801,41802
1801 RPA(J)=RPT
RTA(J)=RTT
GO 70O 802
1802 RPB(J)=RPT
RTB(J)=RTT
802 IF (QYY(I)) 80348094806
803 IF (RPA(J)) 8048054304
804 RPB(J)=RYY(I])
GO TO 618
805 RPA(J)=RYY(])
GO TO 809
806 1IF {(RTA(J)) 8078084807
807 RTB(JI=RYY(])
GO T0O 809
808 RTA(J)=RYY(I])
809 CONTINUE
810 IF (ABS(T=90e)=401) 81196184618
811 RPB{(J)=RT
618 WRITE(64619)
619 FORMAT(//1H +8X9s3HENK 912X s3HENR 12X s3HCSTs9X 03MHDMMe6X s SHTHETA 95X s
16HLAMBDA s 6X s 2HAL 98X 9 2HAR 94X s 5SHGAMMA s SX s 4HROOT)
WRITE(69620)ENKIENRICSTIDMMe Ty XL AL YARIGAIRT
620 FORMAT(3E15e89F104296F1043)
WRITE(69621)
621 FORMAT(//1H +BHRHO/RHOLl95H RHO»10X9s1HQ912Xs2HBR13X»2HBZ 12X
14HFLUXs13X92HO1 913X 2HR1 )
DO 625 I=1eN
IF (QYY(1)) 6249622624
622 WRITE(64623) (RWWII)sRHO(TI) sQXX{I)eBRR{TYsBZ(I)sFLUX(T))
623 FORMAT(1IH +2F84534E154595XsFB8459F1565)
GO TO 625
624 WRITE(6+623) (RWWII)sRHO(TII»QXX(I)sBRR{I)$BZ(I)sFLUXITI)IRYY(I)
1QYY(1))
625 CONTINUE
DO 626 1=1N
626 QYY(!)=0,
T=T+DT
IF (T=TN) 6066069627
627 IF ((T=DT)=TN) 62846299629
628 T=TN
GO TO 606

VP=(Q,

VT=Q,

DO 909 I=14K
CT=SIN(THK(I))
ST=COS{THK(I))
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CXeSIN(THK(TI+1))
SXaCOS{THK(1+1))
IF (VP) 900+900+903
900 IF (RPA(I)) 90999094901
901 IF (RPB{1)) 90949094902
902 X1=RPA(I)«CT
DX=sRPB{[)#CT=X1
XM=X1445#DX
VPaVP4+2 ¢ #PRXMADXXRPB( ] ) %ST
$032 IF 1UT) ON4Le904s907

v we e TS

904 IF (RTA(1)) 90849089905
905 IF (RTB(1)) 90849084906
906 X1sRTA(1)#CTY
DX=RTB(I)#CT=X1
XMzX14e5%#DX
VTaVYT+2 4 #pHXMEDX*RTB(1)#ST
907 X1=RTA(I+1)#CX
DX=2RTA(])#CT=X1
XM=X1+e5%#DX
PV1n2#PpuxXMeDX%#,5%# (RTA(I+]1)#SX+RTA(] ) #ST!
X1=2RTRB(1)#CTY
DX=RTB(I+1)%#CX=X1
XMaX1+45%DX
VTaVT4+PV142 #PRXMEDX® ¢ S® (RTBII+1Ii#SX+RTBII 2ET)
908 X1=RPA(I+1)%xCX
DX=RPA(])#(CT=X1
XMa X1+ ¢5%DX
PV1a2e#PaXMEDX® 5% (RPA(I+1)#SX+RPA(])I®*ST)
X1=RPR(I)%CT
DXsRPB(141)%CX=X1
XMaX1+e5#DX
VPaVP+PV1+2, #P#XMHDX %454 (RPB(I+1)#SX+RPB(])%ST)
909 CONTINUE
WRITE(69910)
910 FORMAT(1H1»5XsSHTHETAISX923HPARTIAL SHIELDED REGION#SX»
121HTOTAL SHIELDED REGION)
DO 915 I=1s1IX
IF (RPA(1)) 9114915,911
911 IF (RTA(1)) 91499124914
912 WRITE(64913)THD(I) sRPA(I)sRPB(])
913 FORMAT(6XsFLel35X92F10e498X92F1044)
GO TO 915
914 WRITE(6+913) THD(I)sRPA(I)sRPB(!)sRTA(I)RTB(I)
91% CONTINUE
VPs2 o #Vp
VIn2 o#VT
WRITE(64916)VP,4VT
916 FORMATI(//1H +16HPARTIAL VOLUMN =£12¢595X914HTOTAL VOLUMN =E12,8)
GO TO 99
999 M=0
END
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SUBROUTINE COMC(ANG)

q
DIMENSION PL{11)sPA(11)sPO(11)9COX12006)9CIX(20096)9TCI(6)sTCO(S)

DIMENSION COB(6)sCIB(6)

COMMON TCIsTCOsPLIPASPOICOXsCIXsCOBICIBIXLIXNIBEISBICBISAICASCLN
COMMON FoGsHsBKIGAIRT»TOWSTHCTsBRHIBT

S1=SIN{ANG)

Cl=COS(ANG)

C2=C1%C1

C3=C1%#(2

CS5=C3nC2

CT=CH%C2

Co=CT%#C2

Cll=Co%C2

Cl3=Cll#C2

C152=C13%#C2

Cl7=C15#C2

Cl9=aC17%C2

C21=C19%#C2

§2=851#81

S3=52#51

S55=53%S2

ST=S5%#S2

SO=ST#S2

S11=a59%852

Bl=Cl/81

B3m(1/S3

R5=C1/85

B7=Cl/87

B9=C1/59

Bll=Cl/s11

TCI(1)=24%C1

TCI(2)2m3#C1%52%#52
TCI(3)=2e258#(35,%#C9=120¢#CT+150e%C5=806#C3+15,#C1)
TCI(4)=el25#(=35e%C143504%C3=1281e%#C5+23244%#CT=22614#C9
1+411344%#C11=231,%C13)
TCI(5)=2)a/64e%(3154%#C1=50404%C3429484e#C5=89280e#CT7+158490,#C9
1=172080¢%#C114112860e#C1l3«=41184e#C15+46435,%#C17)
TCI(6)1=14/128%(=6934%#C1l+16170s%#C3=13652]1+%C5+605880,#CT=1632730,
1%C94+28552924#C11=3326730e%C1342572856¢%C15=1271985e%#C17+364650¢%
2C19=46189,%#C21)

TCO(1)=24%#B1

TCO(2)=44%#B3=T 4R

TCO(3)126e%BS5=2T7,%B3424,7%5%B1
TCO(4)=2B8e#BT=664#B5+143,%#B83=715,/8,*B1
TCO(5)=106¢%BG=130¢¥B7+48745#B5=55254/84#B83+209950/640%B1
TCO(6)E12%#B11=2254%#BO+1275,%#B7=242254/84%#B5+1017454/324%B3
1=156009./1284%81

RETURN

END
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SUBROUTINE LPOL(AGI)

DIMENSION PL(11)oPA(11)9sPO(11)sCOX(20008)9CIX(20006)9TCI(6)9TCOLS)
DIMENSION COB(6)+CIB(6)

COMMON TCIsTCOsPLIPAIPOSICOXICIXsCOBICIBoXLIXNIBEsSBsCBesSAICASCLN
COMMON FoGoHaBKIGAIRTsTOsSToCToBRBT

S1=SIN(AG])

Cl=CO0S{AG!)

C2=C1#C1

C3=C2#C1

C4=C24C2

CS=C4nC}

C6=C3%C3

C7aC3%C4

C8=CanCy

CO=C4nCH

ClO=C54CS

PL(1)=S1

PLI2)=34n51wC]

PLI3 )=l 54S1%(5,2C2=1,)

OL(4)=2e5#S1%(Te%C3=342Cl)

PLISI=S]1/Be®(318,%#C4=210,%#C2+15,)
PLIGIRS]1/166%#(1386¢%#C5=12604%#C3+210+%C1)
PLI7)2S1/16e%(30036%#C6=3465¢#C4+945e%#C2=35,)
PLIB)I=S1/1284#(=2520e%C14277206%#C3=720T72e%#C5+5148044C7)
PLI9)=S1/1284#(3154=13B60¢%#C24+90090e%#C4=180180,%#C6+109395,#C8)
PLII0)I=S1/2564%(6930e#C1=1201204#C34+540540e%#C5=875160+%#CT7+461890,
1#C9)
PL{11)=51/256e%{=693:445045,:%C2=4504504%#C4+1531530e#C6=20T78505,%#C8
1+49669489,%C10)

RETURN

END
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SUBROUTINE FPH(XX)

DIMENSION PL(11)sPA(11)sP0(11)9COX(200+6)9sCIX(20096)sTCI(6)sTCOLE)
DIMENSION COBL(6)sCIBL(S)

COMMON TCIsTCOsPLIPAIPOICOXsCIXsCOBICIBIXLIXNIBEISBICBsSAsCAWCLN
COMMON FoGeHoBKsGAIRTsTOsSTHCTIBRIBRT

1F (XL/SB=XX) 29204

SP=0

X=XL/ XX

M= 0

DO 3 I=146

K=1+M

2=FLOAT(K)

W=eZ4+1le

SP=SP+PO( 1) /WH(COB(T)uX%ny)

M=M+1

Frl =~CLN*SP

GO T0 &

Va Xy /XX

SP=(

SA=y

ALFaASIN(V)

CA=COS(ALF)

CALL COMC(ALF)

CALL LPOL(ALF)

X=XX/XL

M=0

DO 5 =146

Kal+M

Z=FLOAT (K)

WeZsl,
SP1ax#uZuXX¥PL(K)#2o#SARRY/ (XLHCA)=VRHRZAXL %2 %#PL (K)/ (XL¥CARSANRZ)
SPlzle/ (Z8W)HSP]
SPxSP+PO(I)*(le/28Xn22%(CIB(I)=TCI(1))mla/WHVRRWATCO(])=SP1 )
M=M«+1

Fele+CLN*SP

RETURN

END
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SUBROUTINE GAM(XX)
DIMENSION PL(11)sPAL11)9PO(11)+COX(200+6)CIX(20006)+TCI(6)9TCO(S)
DIMENSION COB(5)sCIB(6)
COMMON TCIsTCOsPLIPASPOsCOXsCIXsCOBsCIBIXLoXNSIBE9SBsCBaSAICAICLN
COMMON FoeGoHIBKsGAIRTsTOsSTeCTsBRsBT
IF (XL/SB=XX) 242494
2 Sp=(Q
X=XL /XX
M=0
DO 3 I=146
K=1+M
2=FLOAT(K)
SPaSp+COB(I) /Z%PO(] ) ®X%uK
3 M=M+1
Gz=14/(2s#XN)#SP
GO TO 6
4 V=XL/XX
S$P=0
ALF=ASIN(V)
SA=y
CA=COS(ALF)
XaXx/XL
M=0
DO 5 I=146
KnleM
Z=FLOAT(K)
WaZal,
SP1a2s#Vax(K=1)#PL (K)/(CARSARRK)
SP1laSPleu2 X% x{K+2 )% (SARR(K+1)) /CARPLIK )uWRVRH#ZRTCO(])
SP=SO4PO( 1)/ (2%W)H (Z#X##Z+ (CIB{1)=TCI(1))+SP1)
5 MaM+]
G 1le/(2s%XN)#SP
6 RETURN
END
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SUBROUTINE QUE(RJ)

DIMENSION PL(11)9PA(11)sPO(11)sCOX(20096)9CIX(200+6)9TCI(6)9TCO(6)
DIMENSION COR(6)sCIR(E)

COMMON TCIsTCOWPLIPAIPOSICOXsCIX9COBICIBsXLIXNIBEISBCBsSASCAICLN
COMMON FoGoH 8K sGAIRTsTOsSToCTHeBRIBT

STaSIN(TO)

CT=C0S(T0O)

CALL LPOL(TO)

S$2=0,

RP=(Q

TP=Q

QP=( \
SL=XL/SB |
IF (R=XL) 343,42

IF (SL=R)} 73745

X=R /XL ‘
M=0 |
DO 4 1=146 ,
K=M+1 :
2=FLOAT(K)

WxZ+l,

SP=SP+PLIK) /(ZRW)HXunK#CIB(T)

IF (K ¢GTe 1) QP=PL(K=1)/ST
RP=RP+1o/2%X%%(K=1)#CIB(I)*(CT/ST*PL(K)=QP)
TPETP+CIB({ 1) /Kuxus(K=1)upL (K)

M=M+1

BR=BK*RP

BTa=8K*TP

Y=2 4 #GA/ (R#ST)+CLN#SP {
GO 10 9

X=R /XL

vV=XL /R

ALP=ASIN(XL /R)

SA=SIN(ALP)

CA=COS(ALP)

CALL LPQLI(ALP)

DO 1 I=1,11

PA(I)=aPL (1)

CALL LPCOL(TO)

M=0

DO 6 I=146

Kel+M

2=FLOAT(K)

We241e

IF (K o¢GTe 1) QP=PL(K=1})/ST {
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SPESP+PLIK) /7 (2%W) # (X#eK*¥(CIB(I)=CIX{Jol))+VunyeCOX(Jel})
RPaRP+1le/2%(Xua(K=1)#(CIB(I)=CIX(Jsl))4Vaat{K+2)8COX(Jsl))
12 (CT#PLIK}/S5T=QP)
TP1a2,%#VaaW#PA(K) / (CAXSARRK ) =2 o #SAN%W/CARPA(K) #X#8K
TPIeTP1=K#COX(Jol) #Vae(K+2)+WnXnn (K=1)*{(CIB(I)=CIX(Jsl}))
TP=TP+PL(K) /(ZoW)#TP1

MM+l

BRaBK#RP

BT==BK#TP

Hed SCA/(RUSTIHCLN®SP

GO T0 9

X=X{ /R

M=0

DO 8 I=146

K=M+1

2=FLOAT(K)

W=Z+1,

IF (K oGTe 1) QP=PL(K=1)/ST
TP=TP+PLIK) /WHCOB( T )%xau#(K+2)
RP=RP+COB(1) /WeX%* (K+2)#(PL(I)RCT/ST=QP)
SP=SP+PL{K) /(2#W) #XunynCOB(])

M=M+1

BR=2BK#RP

BT= BK*TP

Hz2 4 #GA/(REST}+CLN*SP

RETURN

END
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FUNCTION FX(QsRT2sR)
IF (ABS(Q)=1e) 19343
IF (R=RT2) 4ebs6
FX=.5*(1.-Q)

GO 10 8

FXul,

GO To 8

IF (Q) 6910410

FX=0,

RETURN

END
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